

django-channels-presence

django-channels-presence is a Django app which adds “rooms” and presence
notification capability to a Django application using django-channels [https://github.com/andrewgodwin/channels]. If you’re building a chat room
or other site that needs to keep track of “who is connected right now”, this
might be useful to you.

Quick install

	Install with pip:

pip install django-channels-presence

	Add "channels_presence" to INSTALLED_APPS:

proj/settings.py

INSTALLED_APPS = [
 ...
 "channels_presence",
 ...
]

Upgrading

Django Channels v2 is a major backwards-incompatible change from Django
Channels v1; and hence the latest django-channels-presence is not
compatible with older versions of django-channels.

If you’re using:

	django-channels v1.x: Use django-channels-presence v0.

	django-channels v2.x: Use django-channels-presence v1+.

Code that uses django-channels-presence v0 or django-channels v1 will
need to be rewritten to target channel layers, consumers, and other new
concepts from django-channels v2.

Motivation

This application builds on top of
django-channels [https://github.com/django/channels]. You should have a good
understanding of how it works before diving in here. To enable groups and
messaging by channel name, django-channels-presence requires that the
optional “channel layers” feature of django-channels v2 be used.

There are 3 main tasks that need to be accomplished in order to track “presence” in rooms using django-channels:

	Observe connections, adding the channel names for each connecting socket to a group.

	Observe disconnections, removing the channel names for each connecting socket from a group.

	Prune channel names from groups after they go stale. We won’t always get a socket disconnect event when a socket drops off; so we need to use heartbeats and a periodic pruning task to remove stale connections.

django-channels-presence provides database models and helpers to handle
each of these tasks. This implementation makes database queries on every
connection, disconnection, and message, as well as periodic queries to prune
stale connections. As a result, it will scale differently than
django-channels alone.

Contents:

	Usage
	Prerequisites

	Managing presences
	1. Adding channels to rooms

	2. Removing channels from rooms

	3. Updating the “last_seen” timestamp
	3a. Heartbeats

	4. Pruning stale connections

	5. Listening for changes in presence

	API Reference
	Settings

	Models
	Room

	Presence

	Decorators
	touch_presence

	remove_presence

	Signals
	presence_changed

Indices and tables

	Index

	Search Page

Usage

Prerequisites

Install and set up django-channels [https://channels.readthedocs.io/en/latest/installation.html] and channel layers [https://channels.readthedocs.io/en/latest/topics/channel_layers.html]. A
CHANNEL_LAYERS configuration is necessary to enable the use of consumer
channel_name properties, to allow storing groups of channels by name.

Managing presences

In django-channels-presence, two main models track the presence of channels in a room:

	Room: represents a collection of channels that are in the same “room”. It has a single property, channel_name, which is the “group name” for the channel layer group [https://channels.readthedocs.io/en/latest/topics/channel_layers.html#groups] to which its members are added.

	Presence: represents an association of a single consumer channel name with a Room, as well as the associated auth User if any.

To keep track of presence, the following steps need to be taken:

	Add channels to a Room when users successfully join.

	Remove channels from the Room when users leave or disconnect.

	Periodically update the last_seen timestamp for clients’ Presence.

	Prune stale Presence records that have old timestamps by running periodic tasks.

	Listen for changes in presence to update application state or notify other users

1. Adding channels to rooms

Add a user to a Room using the manager add method. For example, this
consumer adds the connecting user to a room on connection. This will trigger the channels_presence.signals.presence_changed signal:

from channels.generic.websocket import WebsocketConsumer
from channels_presence.models import Room

class MyConsumer(WebsocketConsumer):
 def connect(self):
 super().connect()
 Room.objects.add("some_room", self.channel_name, self.scope["user"])

Channel names could be added to a room at any stage – for example, in the
connect handler, the receive handler, or
wherever else makes sense. In addition to handling Room and Presence
models, Room.objects.add takes care of adding the channel name to the named
channel layer group.

2. Removing channels from rooms

Remove a consumer’s channel from a Room using the manager remove method.
For example, this handler for disconnect removes the user from the room on
disconnect. This will trigger the presence_changed signal:

from channels.generic.websocket import WebsocketConsumer
from channels_presence.models import Room

class MyConsumer(WebsocketConsumer):
 def disconnect(self, close_code):
 Room.objects.remove("some_room", self.channel_name)

Room.objects.remove takes care of removing the specified channel name from
the channels group.

For convenience, channels_presence.decorators.remove_presence is a decorator to accomplish the same thing:

from channels.generic.websocket import WebsocketConsumer
from channels_presence.decorators import remove_presence

class MyConsumer(WebsocketConsumer):
 @remove_presence
 def disconnect(self, close_code):
 pass

3. Updating the “last_seen” timestamp

In order to keep track of which sockets are actually still connected, we must
regularly update the last_seen timestamp for all present connections, and
periodically remove connections from rooms if they haven’t been seen in a
while.

from channels.generic.websocket import WebsocketConsumer
from channels_presence.models import Presence

class MyConsumer(WebsocketConsumer):
 def receive(self, close_code):
 Presence.objects.touch(self.channel_name)

For convenience, the channels_presence.decorators.touch_presence decorator accomplishes the same thing:

from channels.generic.websocket import WebsocketConsumer
from channels_presence.decorators import touch_presence

handler for "websocket.receive"

class MyConsumer(WebsocketConsumer):
 @touch_presence
 def receive(self, text_data=None, bytes_data=None):
 ...

This will update the last_seen timestamp any time any message is received
from the client. To ensure that the timestamp remains current, clients should
send a periodic “heartbeat” message if they aren’t otherwise sending data but
should be considered to still be present.

3a. Heartbeats

To allow efficient updates, if a client sends a message which is just the JSON
encoded string "heartbeat", the touch_presence decorator will stop
processing of the message after updating the timestamp. The decorator can be
placed first in a decorator chain in order to stop processing of heartbeat
messages prior to other costly steps.

If updating last_seen on every message is too costly, an alternative to
using the touch_presence decorator is to manually call
Presence.objects.touch whenever desired. For example, this updates
last_seen only when the literal message "heartbeat" is received:

from channels.generic.websocket import WebsocketConsumer
from channels_presence.models import Presence

class MyConsumer(WebsocketConsumer):
 def receive(self, text_data=None, bytes_data=None):
 ...
 if text_data == '"heartbeat"':
 Presence.objects.touch(self.channel_name)

To ensure that an active connection is not marked as stale, clients should
occasionally send "heartbeat" messages:

// client.js

setInterval(function() {
 socket.send(JSON.stringify("heartbeat"));
}, 30000);

The frequency should be adjusted to occur before the maximum age for
last-seen presence, set with settings.CHANNELS_PRESENCE_MAX_AGE (default 60
seconds).

4. Pruning stale connections

In order to remove connections whose timestamps have expired, we need to
periodically launch a cleaning task. This can be accomplished with
Room.objects.prune_presences(). For convenience, this is implemented as a
celery task which can be called with celery beat:
channels_presence.tasks.prune_presences. The management command
./manage.py prune_presences is also available for calling from cron.

A second maintenance command, Room.objects.prune_rooms(), removes any Room
models that have no connections. This is also available as the celery task
channels_presence.tasks.prune_rooms and management command
./manage.py prune_rooms.

See the documentation for
periodic tasks in celery [http://celery.readthedocs.io/en/latest/userguide/periodic-tasks.html] details on configuring celery beat with Django. Here is one example:

settings.py

CELERYBEAT_SCHEDULE = {
 'prune-presence': {
 'task': 'channels_presence.tasks.prune_presences',
 'schedule': timedelta(seconds=60)
 },
 'prune-rooms': {
 'task': 'channels_presence.tasks.prune_rooms',
 'schedule': timedelta(seconds=600)
 }
}

5. Listening for changes in presence

Use the channels_presence.signals.presence_changed signal to be notified when
a user is added or removed from a Room. This is a useful place to define logic
to update other connected clients with the list of present users. See the
API reference for presence_changed for an example.

API Reference

Settings

	CHANNELS_PRESENCE_MAX_AGE

	Default 60. Maximum age in seconds before a presence is considered
expired.

Models

Room

from channels_presence.models import Room

Manager:

	Room.objects.add(room_chanel_name, user_channel_name, user=None)

	Add the given user_channel_name (e.g. consumer.channel_name) to
a Room with the name room_channel_name. If provided, associate the auth
User as well. Creates a new Room instance if it doesn’t exist;
creates any needed Presence instance, and updates the channels group
membership. Returns the room instance.

	Room.objects.remove(room_channel_name, user_channel_name)

	Remove the given user_channel_name from the room with
room_channel_name. Removes relevant Presence instances, and updates
the channels group membership.

	Room.objects.prune_presences(age_in_seconds=None)

	Remove any Presence models whose last_seen timestamp is older than
age_in_seconds (defaults to settings.CHANNELS_PRESENCE_MAX_AGE if
not specified).

	Room.objects.prune_rooms()

	Remove any rooms that have no associated Presence models.

Instance properties:

	room.channel_name

	The channel name associated with the group for this room.

Instance methods:

	room.get_users()

	Return a queryset with all of the unique authenticated users who are
present in this room.

	room.get_anonymous_count()

	Return the number of non-authenticated sockets which are present in this
room.

Presence

from channels_presence.models import Presence

Manager:

	Presence.objects.touch(channel_name)

	Updates the last_seen timestamp to now for all instances with the given
channel name.

	Presence.objects.leave_all(channel_name)

	Removes all Presence instances with the given channel name. Triggers
channels_presence.signals.presence_changed for any changed rooms.

Instance properties:

	presence.room

	The room to which this Presence belongs

	presence.channel_name

	The consumer channel name associated with this Presence

	presence.user

	A settings.AUTH_USER_MODEL associated with this Presence, or None

	presence.last_seen

	Timestamp for the last time socket traffic was seen for this presence.

Decorators

touch_presence

from chanels_presence.decorators import touch_presence

Decorator for use on websocket.receive handlers which updates the
last_seen timestamp on any Presence instances associated with the
client. If the message being sent is the literal JSON-encoded "heartbeat",
message processing stops and the decorator does not call the decorated
function. Note that this decorator is syncronous, so should only be used on
syncronous handlers.

from channels.generic.websocket import WebsocketConsumer

class MyConsumer(WebsocketConsumer):
 @touch_presence
 def receive(self, text_data=None, bytes_data=None):
 pass

remove_presence

from chanels_presence.decorators import remove_presence

Decorator for use on websocket.disconnect handlers which removes any
Presence instances associated with the client. Note that this decorator is
syncronous, so should only be used on syncronous handlers.

from channels.generic.websocket import WebsocketConsumer

class MyConsumer(WebsocketConsumer):
 @remove_presence
 def disconnect(self, close_code):
 pass

Signals

presence_changed

from channels_presence.signals import presence_changed

A Django signal dispatched on any addition or removal of a Presence from a
Room. Use it to track when users come and go.

Arguments sent with this signal:

	room

	The Room instance from which a Presence was added or removed.

	added

	The Presence instance which was added, or None.

	removed

	The Presence instance which was removed, or None.

	bulk_change

	If True, indicates that this was a bulk change in presence. More than
one presence may have been added or removed, and particular instances will
not be provided in added or removed arguments.

Example:

app/signals.py

import json

from asgiref.sync import async_to_sync
from channels.layers import get_channel_layer
from channels_presence.signals import presence_changed
from django.dispatch import receiver

channel_layer = get_channel_layer()

@receiver(presence_changed)
def broadcast_presence(sender, room, **kwargs):
 """
 Broadcast the new list of present users to the room.
 """

 message = {
 "type": "presence",
 "payload": {
 "channel_name": room.channel_name,
 "members": [user.serialize() for user in room.get_users()],
 "lurkers": room.get_anonymous_count(),
 }
 }

 # Prepare a dict for use as a channel layer message. Here, we're using
 # the type "forward.message", which will magically dispatch to the
 # channel consumer as a call to the `forward_message` method.
 channel_layer_message = {
 "type": "forward.message",
 "message": json.dumps(message)
 }

 async_to_sync(channel_layer.group_send)(room.channel_name, channel_layer_message)

app/channels.py: App consumer definition

from channels.generic.websocket import WebsocketConsumer

class AppConsumer(WebsocketConsumer):
 def forward_message(self, event):
 """
 Utility handler for messages to be broadcasted to groups. Will be
 called from channel layer messages with `"type": "forward.message"`.
 """
 self.send(event["message"])

Index

 nav.xhtml

 Table of Contents

 		
 django-channels-presence

 		
 Usage

 		
 Prerequisites

 		
 Managing presences

 		
 1. Adding channels to rooms

 		
 2. Removing channels from rooms

 		
 3. Updating the “last_seen” timestamp

 		
 4. Pruning stale connections

 		
 5. Listening for changes in presence

 		
 API Reference

 		
 Settings

 		
 Models

 		
 Room

 		
 Presence

 		
 Decorators

 		
 touch_presence

 		
 remove_presence

 		
 Signals

 		
 presence_changed

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

